forlab_math_is_close.f90 Source File


Contents


Source Code

submodule(forlab_math) forlab_math_is_close

    use, intrinsic :: ieee_arithmetic, only: ieee_is_nan
    implicit none

contains

    elemental module logical function is_close_rsp(a, b, rel_tol, abs_tol, equal_nan) result(close)
        real(sp), intent(in) :: a, b
        real(sp), intent(in), optional :: rel_tol, abs_tol
        logical, intent(in), optional :: equal_nan
        logical :: equal_nan_

        equal_nan_ = optval(equal_nan, .false.)

        if (ieee_is_nan(a) .or. ieee_is_nan(b)) then
            close = merge(.true., .false., equal_nan_ .and. ieee_is_nan(a) .and. ieee_is_nan(b))
        else
            close = abs(a - b) <= max(abs(optval(rel_tol, 1.0e-9_sp)*max(abs(a), abs(b))), &
                                      abs(optval(abs_tol, 0.0_sp)))
        end if

    end function is_close_rsp
    elemental module logical function is_close_rdp(a, b, rel_tol, abs_tol, equal_nan) result(close)
        real(dp), intent(in) :: a, b
        real(dp), intent(in), optional :: rel_tol, abs_tol
        logical, intent(in), optional :: equal_nan
        logical :: equal_nan_

        equal_nan_ = optval(equal_nan, .false.)

        if (ieee_is_nan(a) .or. ieee_is_nan(b)) then
            close = merge(.true., .false., equal_nan_ .and. ieee_is_nan(a) .and. ieee_is_nan(b))
        else
            close = abs(a - b) <= max(abs(optval(rel_tol, 1.0e-9_dp)*max(abs(a), abs(b))), &
                                      abs(optval(abs_tol, 0.0_dp)))
        end if

    end function is_close_rdp

    elemental module logical function is_close_csp(a, b, rel_tol, abs_tol, equal_nan) result(close)
        complex(sp), intent(in) :: a, b
        real(sp), intent(in), optional :: rel_tol, abs_tol
        logical, intent(in), optional :: equal_nan

        close = is_close_rsp(a%re, b%re, rel_tol, abs_tol, equal_nan) .and. &
                is_close_rsp(a%im, b%im, rel_tol, abs_tol, equal_nan)

    end function is_close_csp
    elemental module logical function is_close_cdp(a, b, rel_tol, abs_tol, equal_nan) result(close)
        complex(dp), intent(in) :: a, b
        real(dp), intent(in), optional :: rel_tol, abs_tol
        logical, intent(in), optional :: equal_nan

        close = is_close_rdp(a%re, b%re, rel_tol, abs_tol, equal_nan) .and. &
                is_close_rdp(a%im, b%im, rel_tol, abs_tol, equal_nan)

    end function is_close_cdp

end submodule forlab_math_is_close